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SUMMARY

A numerical simulation of reaction injection molding (RIM) of polymeric foam is developed, using a
�nite volume method (FVM). In this study we predict mold �lling with a variable-density �uid that �lls
a mold by self-expansion. We deal with two-dimensional, isothermal cases. With the assumptions of
ideal mixing and rapid bubble nucleation, the foam is modelled as a continuum with a time-dependent
density. The continuum is assumed to be a Newtonian �uid. We develop a pressure-based FVM for
unstructured meshes that includes the SIMPLE algorithm with treatment of �uid compressibility. Cell-
based, co-located storage is used for all physical variables. To treat the moving interface, an explicit
high-resolution interface capturing method is used. Foam �ow in a slit is investigated, and the numerical
calculations are in good agreement with an approximate analytic solution. For fountain �ow in a rect-
angular cavity, the shape of the �ow front is �atter and the traces of the particles are more complicated
for an expanding foam than for a constant-density �uid. An example of mold �lling by an expanding
foam demonstrates the geometric �exibility of the method. Copyright ? 2003 John Wiley & Sons, Ltd.

KEY WORDS: foam molding; injection molding; self-expanding �uid; �nite volume method; unstru-
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INTRODUCTION

Reaction injection molding (RIM) is a widely used process for producing various kinds of
complex parts including automobiles, furniture, appliances, and housings. In RIM, products
are made from two or more chemical components through mixing, chemical reaction, and
molding [1, 2]. Liquid reactants from two supply tanks �ow at high pressure into a mix head,
where they impinge at high velocity. After impingement mixing, the mixture �ows out into
the mold cavity and the polymerization is initiated. During the process, foaming can occur.
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Chemical and/or physical blowing agents are generally used in RIM for foaming [3–8]. There
are many advantages of foamed materials, including low cost, light weight, enhanced thermal
and electrical insulation, and high impact strength [9].
In order to model the foam reaction injection molding (FRIM) process completely, one

would have to understand the phenomena of mixing, bubble nucleation, reaction kinetics,
bubble growth, foam rheology, and �ow behaviour during mold �lling. Each of these is a
complex subject that has been studied intensively, and it is di�cult to consider all of them
simultaneously. For this reason, there have been few studies reported on FRIM. There have
been some numerical simulations of the RIM process [10–14]. In these studies, numerical
methods similar to those used for injection molding were used to simulate the process. Mold
�lling was driven by an external injection pressure. Mixing was generally assumed to be ideal.
Reaction kinetics and heat transfer during mold �lling were taken into account, but bubble
growth and foam rheology were not considered.
Arai et al. [15] did experiments in which pre-mixed foam reactants were poured into

an L-shaped mold, and allowed to �ll the mold as the mixture foamed and expanded. The
distribution of the foam density was then evaluated in the solid part. In spite of some variations
due to the amine catalyst used, the density varied from about 30 to 40 kg=m3 depending on
the location in the mold, while the density of the free-rising foam was about 22 kg=m3. Their
research showed that foam density is a�ected by the pressure of the foam �uid, even though
this is not the main factor that controls foam density.
Lefebvre and Keunings [16, 17] simulated numerically the continuous �ow of chemically

reactive polymeric liquids in two-dimensional geometries using a �nite element method. The
gelling reaction which leads to the formation of polyurethane, and a blowing reaction from a
chemical blowing agent, were taken into account. A spine method was used to treat the free
surface, however, this method is not appropriate for �lling molds of complex geometry. The
density of the foam was a function only of temperature, which varied because the reactions
are exothermic.
In this study, we propose a model and predict mold �lling with a variable-density �uid that

�lls a mold by self-expansion. We deal with two-dimensional cases as a basic investigation.
With the assumptions of ideal mixing and rapid bubble nucleation, the foam is modelled as
a continuum with a time-dependent density decrease that is induced by bubble growth. The
continuum is assumed to be a Newtonian �uid. Reaction and temperature are not taken into
consideration, as the focus in this study is on self-expansion of the foam.
For numerical calculations, we develop a pressure-based �nite volume scheme for unstruc-

tured meshes [18] that includes the SIMPLE algorithm [19] with treatment of �uid com-
pressibility. Cell-based, co-located storage is used for all physical variables. For treating the
moving interface, an explicit high-resolution scheme that is similar to the CICSAM (compres-
sive interface capturing scheme for arbitrary meshes) method [20] is used.

MODELLING

The mold that forms the computational domain for FRIM is partially �lled with foam and
has a moving interface. In our simulation the empty regions in the mold are considered
to be completely �lled with a �ctitious �uid that has di�erent physical properties from the
foam [21]. If only the isothermal case is considered and surface tension at the interface is
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negligible, the general governing equations include the continuity equation,

@�
@t
+∇ · (�v)=0 (1)

and the momentum equation,

@
@t
(�v) +∇ · (�vv − T)=�g (2)

Here � is density, t is time, v is the velocity vector, and g is the acceleration due to gravity.
T is the total stress, which is de�ned as

T=−pI+ � (3)

where p is pressure, I is the unit tensor, and � is the extra stress tensor.
In order to solve these equations, several assumptions are needed. The foam is considered

as a continuum which can be modelled as a Newtonian �uid. Although the pressure in the
foam �uid a�ects the density through the bubble growth in real FRIM systems [6, 22, 23],
in this study density change from self-expansion is assumed to be a known function of time
only. This approximates self-expansion due to a spatially homogeneous chemical reaction.
The equations that follow assume that density can vary with position as well as time, but
our numerical examples assume that every point in the foam has the same density at any
given time. Our examples assume that viscosity is constant, but viscosity could be a function
of time in order to represent curing phenomena by a chemical reaction [2, 24] or rheological
changes as the foam expands [25]. Laminar �ow is assumed, but transient and inertia e�ects
are considered because the viscosity is very low at the start of molding.
For a compressible Newtonian �uid, the extra stress tensor is de�ned as

�=�[(∇v) + (∇v)T] + �(∇ · v)I (4)

where a superscript T indicates the transpose of tensor, � is the shear viscosity and � is
the dilatational viscosity. We use �=−2�=3, following Stokes’ hypothesis [26]. Now the
governing equations for the foam �uid are

∇ · v=−1
�

[
@�
@t
+ v · (∇�)

]
(5)

@
@t
(�v) +∇ · (�vv) =−∇p+ �∇2v+

1
3
�∇(∇ · v) + �g (6)

The third term on the right-hand side of Equation (6) represents a viscous stress from density
variation, and does not appear for the incompressible �uid.
For solving the empty domain which is actually �lled with air, some additional assumptions

are needed. The air is assumed to be an incompressible Newtonian �uid. Laminar �ow is
assumed. The density of air is about 1 kg=m3 and its viscosity is about 10−5 Pa s. If the air is
replaced with a �ctitious �uid whose viscosity is approximately 1 Pa s, then transient, inertia,
and gravity e�ects can be neglected in the �ctitious �uid, but the solution in the foam �uid
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is essentially unchanged [27]. Then the governing equations for the empty part reduce to

(∇ · v) = 0 (7)

−∇p+ �∇2v=0 (8)

In order to track the interface between foam and air, the fractional volume function f(x; t)
is de�ned such that [28]

f(x; t)=

{
1 for the point (x; t) �lled with foam
0 for the point (x; t) �lled with air

(9)

This function is governed by a scalar advection equation,

@f
@t
+ v · ∇f=0 (10)

The interface is located in the cells whose average value of f lies between 0 and 1. When
necessary, the approximate location of the interface is reconstructed by drawing the contour of
f=0:5. This is strictly a post-processing operation, and has no e�ect on the calculation itself.
For partially �lled cells, material properties such as viscosity and density are interpolated

using

�= �foamf + �air(1− f) (11)

�= �foamf + �air(1− f) (12)

In our examples the mold does not have inlets, because some portion of the mold is assumed
to be �lled with un-expanded foams at the beginning of molding. The initial velocity is set
to zero at every point within the mold and the initial pressure has a hydrostatic distribution.
A no-slip condition is applied between the mold wall and the foam. On the other hand, the
air is assumed to be free to leave or enter the mold, so the boundary between the mold wall
and air is traction-free. The boundary condition at the mold wall must change as the mold
�lls. The change is made according to the fractional volume function, as follows [29, 30]:

v=0 where f¿fc (13)

n · T=0 where f¡fc (14)

where fc is a critical fractional volume. Typically we use fc = 0:90.
When solving mold �lling with constant-density �uid, we need a boundary condition at

the inlet to the mold. This boundary condition is typically either a constant �ow rate with a
parabolic velocity pro�le, or a constant pressure with a fully developed �ow condition.
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Figure 1. Cell-based control volumes.

NUMERICAL FORMULATION

Our numerical approach uses a pressure-based FVM scheme for unstructured meshes, and
includes the SIMPLE algorithm with �uid compressibility. All variables are stored at the cell
centres, and the momentum interpolation method is used to prevent checkerboard pressure
modes. In order to capture the sharp �uid interface on an arbitrary mesh, an explicit high-
resolution interface capturing method is used. The following formulations are developed for
two-dimensional problems, but can easily be extended to three-dimensional problems. We
will discuss only the numerical formulation of the governing equations for the foam, because
the �ctitious �uid can be solved using the same discretized equations as the foam but with
di�erent viscosity and density.
The computational domain, which covers the entire mold, is divided into unstructured con-

trol volumes, also called cells. Cells are either interior cells or boundary cells. Each interior
cell consists of cell faces, which have outward normal area vectors; cell nodes, which are
located at the vertices of the cells; and a cell centre, which lies at the mass centre of the cell,
as shown in Figure 1. Each boundary cell is a line element located on the boundary of the
domain, and has zero volume. The neighbour cells (N ) of a speci�c cell (P) are the cells that
share a common face (f) with cell P. For two-dimensional triangular meshes, each interior
cell has three neighbour cells and three faces. All physical variables and their derivatives
are stored at the cell centre, but face properties such as mass �ux are calculated at the face
centres. Derivatives of variables in the cells of unstructured meshes cannot be obtained easily.
To evaluate derivatives, a linear reconstruction method [18] based on the divergence theorem
is used, as shown in Appendix A.
In order to discretize the governing equations, we need to evaluate the di�usive �ux of

some variables at the cell faces. The method of calculating the gradient on an unstruc-
tured mesh is also used to calculate di�usive �ux terms at the cell faces, as shown in
Appendix B.

Continuity equation

Integrating the continuity equation (1) over the control volume and applying the diver-
gence theorem and a fully implicit time discretization, we obtain the discretized continuity
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equation as

a�P − a�
0

P +
∑
f
�fFf=0 (15)

a�P =
�P
�t
(�V )P (16)

a�
0

P =
�0P
�t
(�V )P (17)

Ff = (�A)f · vf (18)

Here a superscript 0 indicates a value at the previous time step, �t is the time interval, (�V )P
is the volume of cell P; (�A)f is the outward normal area vector of the face f; vf is the
velocity at the face f, and Ff represents the volume �ux at the cell face f. In order to calculate
face volume �ux, the face velocity must be obtained using an appropriate interpolation scheme,
because velocity is de�ned only at cell centre. This will be discussed later. From another
version of the continuity equation (5), we can also obtain the divergence of the velocity in
the cell P, which represents the density variation.

∑
f
Ff=(∇ · v)P(�V )P=− 1

�P

[
a�P − a�

0

P + vP · (∇�)P(�V )P
]

(19)

If the density change is known, the divergence of velocity can be calculated using this
equation.

Momentum equation

Integrating the momentum equation (6) over the control volume and applying the divergence
theorem gives∫

P

@�v
@t
dV +

∑
f
(�A) · (�vv − �∇v)=

∫
P
∇p dV + 1

3

∫
P
�∇(∇ · v) dV +

∫
P
�g dV (20)

We now focus on the x-direction component of the momentum equation, which is∫
P

@�u
@t
dV +

∑
f
(�A) · (�vu− �∇u)=

∫
P

@p
@x
dV +

1
3

∫
P
�
@
@x
(∇ · v) dV +

∫
P
�gx dV (21)

Here u is the x-direction velocity and gx is the x component of the gravitational acceleration.
Using a fully implicit time derivative and discretizing the di�usion term, we obtain a discrete
momentum equation as follows:

a�PuP − a�
0

P u
0
P +

∑
f
�fFfuf +

∑
f
(Df(uP − uN )− S nonf; u )

= −
(
@p
@x

)
P
(�V )P +

1
3
�P

(
@
@x
(∇ · v)

)
P
(�V )P + �Pgx(�V )P (22)
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Df = �f
(�A)f · (�A)f

(�V )f
(23)

S nonf; u = �f

[
(�A)f · (∇u)f − (�A)f · (�A)f

(�V )f
(∇u)f · rPN

]
(24)

where P represents the present cell, N is a neighbour cell, and f is the face between P
and N . Df is the di�usion coe�cient for viscous stress that includes geometric information,
and S nonf; u is a secondary di�usion term for x-direction viscous force at face f. The bar over
(∇u)f represents a length-inverse weighted average between cells P and N , as de�ned in
Equation (A2).
Using the discretized continuity equation (15), the transient terms in Equation (22) can be

changed into the following relation:

a�PuP − a�
0

P u
0
P= a

�0

P (uP − u0P)−
∑
f
�fFfuP (25)

The x-direction total momentum �ux at face f, which consists of convective and di�usive
�uxes, must be modi�ed using a di�erencing scheme in order to obtain a converged solution.

�fFfuf +Df(uP − uN )− S nonf; u = �fFfuP + aN (uP − uN )− S nonf; u (26)

aN =DfA(|Pf|) + max{0;−�fFf} (27)

Pf = �f
Ff
Df

(28)

where Pf is the Peclet number at face f. A(|Pf|) would be unity for the upwind di�erencing
scheme. We use a power-law di�erencing scheme, for which the function is

A(|Pf|)= max{0; (1− 0:1|Pf|)5} (29)

If Equations (25) and (26) are substituted into Equation (22), the �nal discretized equation
for x momentum is found to be

aPuP =
∑
f
aNuN −

(
@p
@x

)
P
(�V )P + S nonP; u (30)

aP = a
�0

P +
∑
f
aN (31)

S nonP; u = a
�0

P u
0
P +

∑
f
S nonf; u +

1
3
�P

(
@
@x
(∇ · v)

)
P
(�V )P + �Pgx(�V )P (32)
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The y- and z-direction momentum equations are discretized in the same manner. The �nal
discretized momentum equation can be written in vector form as follows:

aPvP =
∑
f
aNvN − (∇p)P(�V )P + SnonP (33)

SnonP = a�
0

P v
0
P +

∑
f
Snonf +

1
3
�P(∇(∇ · v))P(�V )P + �Pg(�V )P (34)

The source term SnonP contains the momentum of the previous time step, the secondary di�usion
of momentum, the viscous force from density change, and gravity force.
These discretized momentum equations can be under-relaxed to obtain converged velocity

solutions, using

vnew = �vv+ (1− �v)v(n−1) (35)

where �v is a velocity under-relaxation factor with a value between 0 and 1, v is the corrected
velocity vector without relaxation calculated using Equation (33), and v(n−1) represents the
velocity from the previous iteration. After some algebra, Equations (33) and (35) can be
combined to give

aP
�v
vP=

∑
f
aNvN − (∇p)P(�V )P + SnonP +

[
(1− �v) aP�v

]
v(n−1)P (36)

This is the equation used for velocity iterations in our code.

Boundary conditions

Boundary conditions for the momentum equations include a no-slip condition where the foam
contacts the wall and a no-traction condition where the mold edge is in contact with air.
The di�usive momentum �ux between an interior cell and a boundary cell can be written as
(see Appendix B):

�b(�A)b · (∇v)b=Db(vb − vP) + Snonb (37)

For a no-slip condition, velocity and volume �ux are set to zero. Thus, the di�usive �ux
of momentum can be easily calculated and applied in the overall momentum equation. For
a traction-free condition note that, in our algorithm, pressure and the divergence of velocity
(∇ · v) are treated as volume properties that are integrated over each control volume. So,
at a traction-free boundary the di�usive �ux of momentum is set to zero and the boundary
velocity is updated as follows:

vb= vh= vP + (∇v)TP · sPf (38)

The point h lies on the line normal to the face f and passing through the centre of the face,
whose normal distance to the face is the same as the cell centre P (see Figure 1(b)). sPf is
the vector from P to h point.
A fully developed �ow condition at the inlet boundary is also treated by setting the di�usive

�ux of momentum to zero. For a constant �ow rate condition at the inlet boundary, the velocity
is already known, so the di�usive �ux of momentum can be calculated using Equation (37).
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Pressure-correction equation

If the pressure gradient is known, Equation (36) can be easily solved. However, the pressure
must also be calculated as a part of the solution, so another equation for pressure is needed.
Pressure is a primary variable, but does not have its own equation. Here the SIMPLE algorithm
is employed to obtain a pressure-correction equation from the continuity equation [19]. For
this purpose, the volume �ux at each cell face must be known. But the face �ux cannot be
obtained easily, because velocity is stored only at the cell centre. So we need a method of
evaluating �ux at the cell face. Checkerboard pressure solutions will result if one uses simple
linear interpolation [19]. In this study we use the momentum interpolation method (MIM), as
�rst proposed by Rhie and Chow [31].
Using the discretized momentum equation, the volume �ux Ff at each cell face can be

calculated according to the following equation (see Appendix C):

Ff=(�A)f · �vf − (�A)f · (�A)f
�af

((pN − pP)− (∇p)f · rPN ) (39)

This formulation is the same as that of Mathur and Murthy [18]. When variations of velocity
are large, which occur often near the wall, and the cell face centre does not lie on the line
connecting the centres of neighbour cells as shown in Figure 1(b), a linear average of velocity
at the cell face is not appropriate. So we modify the above equation as follows:

Ff = (�A)f · ṽf − (�A)f · (�A)f
�af

((pN − pP)− (∇p)f · rPN ) (40)

ṽf =
vf;P + vf;N

2
(41)

vf;P = vP + (∇v)TP · rPf (42)

vf;N = vN + (∇v)TN · rNf (43)

where rPf and rNf are described in Figure 1(b).
If the volume �ux correction term is de�ned by the following equation;

F ′
f ≡− (�A)f · (�A)f

�af
(p′

N − p′
P)=�f(p

′
P − p′

N ) (44)

a pressure-correction equation can be obtained after substituting the volume �ux into the
discretized continuity equation, Equation (19).

�Pp′
P =

∑
f
�fp′

N + bP (45)

�P =
∑
f
�f (46)

bP =− 1
�P
[a�P − a�

0

P + vP · (∇�)P(�V )P]−
∑
f
F∗
f (47)
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Here F∗
f is a volume �ux which is calculated from the velocity that satis�es the momentum

equation, and bp is called the residue of continuity. After the pressure correction term is
obtained, some variables are corrected using the result. Volume �ux at the cell face, as well
as pressure and velocity at the cell centre, should be corrected by using the following equations
sequentially:

Ff = F∗
f + F

′
f (48)

pP =p∗
P + �pp

′
P (49)

vP = v∗P −
(�V )P
aP

(∇p′)P (50)

where p∗ and v∗ are values after solving the momentum equation and �p is an under-relaxation
coe�cient for the pressure.
At the wall boundary there is no �ux, so the volume �ux correction is equal to zero,

F ′
b =�b(p

′
P − p′

b)=0 (51)

and the wall boundary pressure is updated as follows:

pb=ph=pP + (∇p)P · sPf (52)

At a free boundary, pressure is assumed to be zero, so the pressure correction is zero. Then
the volume �ux correction term can be represented as

F ′
b =�bp

′
P (53)

For a constant pressure condition at an inlet boundary, the pressure correction term is set to
zero. A constant �ow rate condition is treated by setting the volume �ux correction to zero.

Solving fractional volume function

After solving for the distribution of velocity, the new position of the interface must be updated
by solving the fractional volume equation. Ubbink and Issa [20] developed the CICSAM
method for the accurate capturing of �uid interfaces on meshes of arbitrary topology. Their
scheme is implicit, and theoretically has second-order temporal accuracy because the Crank–
Nicolson scheme is used for temporal discretization. A similar method is used in our explicit
scheme.
The conservative form of the volume fraction advection equation is

@f
@t
+∇ · (fv)=f(∇ · v) (54)

where the term on the right-hand side will be zero for the �ctitious �uid. Integrating this
equation over a control volume and applying the divergence theorem leads to∫

P

@f
@t
dV +

∑
f
ff(�A)f · vf=

∫
P
f(∇ · v) dV (55)
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Figure 2. Designation of upwind, downwind, and centre cell according to the
�ow direction for arbitrary cell topology.

Using an explicit Euler scheme, and assuming that the variation of velocity is much smaller
than that of volume fraction during the small time step so that the newest velocities can be
used, we can write

fP − f0P
�t

(�V )P=−∑
f
f0f (�A)f · vf + f0P (∇ · v)P(�V )P (56)

or, rearranging,

fP =f0P (1 + (∇ · v)P�t)−
∑
f
f0f cf;P (57)

cf;P =
�t

(�V )P
(�A)f · vf= �t

(�V )P
Ff (58)

where cf;P is called the face Courant number for face f in cell P.
It is very important to use appropriate face volume fraction values (f0f ) at the previous

time step in order to obtain a bounded and non-di�usive solution. The central di�erencing
scheme has second-order accuracy, but gives an unbounded solution. The upwind scheme gives
bounded results, but the solution is very di�usive. The downwind scheme gives a compressive,
non-di�usive but unbounded solution. The CICSAM method chooses between two schemes,
according to the �ow direction and the interface orientation. These are the Hyper-C (HC)
scheme and the ULTIMATE-QUICKEST (UQ) scheme.
The HC scheme [32] is known to be very compressive, because it turns every �nite gradient

into a step pro�le. This is very desirable property for calculating sharp interfaces when the
interface is normal to the �ow direction. This di�erencing scheme is best explained using
normalized variables. The normalized value of f is de�ned as

f̂≡ f
0 − f0U
f0D − f0U

(59)

where subscripts U and D indicate the upwind and downwind values, de�ned according to
the �ow direction as shown in Figure 2. The downwind value is the value at the centre of the
downwind cell, while the upwind value is taken at the same distance from the centre cells,
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but in the opposite direction. The value of f at the upwind cell is approximated using

f0U =f
0
C − (∇f)0f · rCD (60)

where the subscript C refers to the centre cell, f is the cell face between the centre and
downwind cells, and rCD is the vector connecting the centre and downwind cells. This ap-
proximation does not guarantee a bounded value, so it is necessary to bound the result with
the known value of f.

f0U = min{max{f0U; fmin}; fmax} (61)

In our study, fmin and fmax are zero and one, respectively. Now the HC scheme can be
represented as follows:

f̂HC =



min

{
1;
f̂C
c

}
when 06f̂C61

f̂C when f̂C¡0 or f̂C¿1

(62)

c=
∑
f
|cf;C| (63)

where c is the Courant number of the centre cell.
The UQ method [32] is a third-order di�erencing scheme for the convection equation that

has a good performance, but is di�usive for sharp interfaces. So it is used when the interface
is tangential to the �ow direction. The UQ scheme can be represented as follows [20]:

f̂UQ =



min

{
8cf̂C + (1− c)(6f̂C + 3)

8
; f̂HC

}
when 06f̂C61

f̂C when f̂C¡0 or f̂C¿1

(64)

CICSAM switches smoothly these two schemes using the weighting factor 06�f61,

f̂f= �ff̂HC + (1− �f)f̂UQ (65)

where �f is calculated based on the angle �f between the interface normal and the �ow
direction,

�f =min
{
k�
cos(2�f) + 1

2
; 1
}

(66)

�f = arccos
∣∣∣∣ (∇f)0C · vC|(∇f)0C||vC|

∣∣∣∣ (67)

Here k�¿0 is a constant introduced to control the dominance of the di�erent schemes. In our
case this value is unity, which is recommended by Ubbink and Issa [20], and vC is the velocity
vector at the centre cell. Ubbink and Issa [20] used rCD in place of vC, but we obtained less
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mesh dependence using Equation (67). After the normalized face volume fraction is obtained,
f0f is reconstructed as follows:

f0f = f̂f(f
0
D − f0U) + f0U (68)

After �nding all face values in this way, the cell values of fractional volume function are
updated explicitly according to Equation (57).
The Courant number must be less than unity in order to obtain converged solutions, because

an explicit scheme is used. In our algorithm, the time step is chosen to keep the maximum
Courant number less than 0.5. Courant numbers at every cell are di�erent because velocity
and cell volume vary from cell to cell. For this reason, the newly calculated volume fractions
of some cells can occasionally be greater than unity. This excess volume fraction is distributed
into downwind neighbour cells according to the ratio of face Courant numbers. However, if
a downwind neighbour cell is boundary cell, it does not receive any of this excess volume
fraction.
At the boundary, the fractional volume function f is calculated as

fb=fP + (∇f)P · rPb (69)

where rPb is the vector from P to point b (see Figure 1(a)). At both walls and free boundaries,
the face �ux of fractional volume is set to zero to prevent mass loss. At the inlet boundary
f is always set to unity.

Overall solution procedure

The solution procedure for predicting mold �lling of the foam is as follows:

1. Initialize fractional volume function f at all cells in the mold and set the boundary
conditions.

2. Initialize pressure and the velocity vector at all interior and boundary cells. Compute
the face volume �ux Ff.

3. Calculate density and viscosity of the foam using the given functions of time, and then
obtain the overall density and viscosity in the mold according to the fractional volume
function.

4. Solve the momentum equation, Equation (36), with current values of the pressure p∗

and the face volume �ux.
5. Update face volume �ux F∗

f using the newly calculated velocity v∗.
6. Obtain the pressure correction p′ by solving the pressure correction equation,
Equation (45).

7. Correct the volume �ux, pressure, and velocity using Equations (48)–(50).
8. Repeat steps 4–7 until �ow �eld solution is converged.
9. Solve the fractional volume equation, Equation (57).
10. Update the boundary condition according the newly calculated fraction volume function.
11. Advance the time step and go step 3.
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Figure 3. Pressure pro�les for expanding foam in the thin slit.
�=10 000 Pa s, �0 = 100 kg=m

3, and 	=1 s−1.

RESULTS AND DISCUSSION

Foam �ow in a slit
As a test problem, foam �ow in a rectangular slit was solved. This problem has an approximate
analytic solution for the case of creeping �ow, which is developed in Appendix D. The length
L of the slit used for numerical calculations is 1 m and the height 2H is 0:1 m. The mesh
of this slit is unstructured and has 2170 elements and 1196 nodes. The slit is initially �lled
completely with expanding foam whose density decays exponentially with time, as given in
Equation (D1). The right-hand side of the slit has a free surface boundary condition while the
other sides are walls. In this case, the viscosity is 10 000Pa s, the initial density is 100kg=m3,
and the rate of exponential decay 	, which is de�ned in Equation (D1), is 1 s−1. This makes
the Reynolds number 2:5× 10−5, so inertia is negligible. We also neglect gravity.
Figure 3 shows the pressure pro�les of the analytical and numerical solutions for ex-

panding foam. The numerical data is taken along the lower wall, y= − H . The maximum
pressure of the analytical solution at x=0 is 6:00× 106 Pa, while the numerical solution gives
p=5:90× 106 Pa. The reason is that, near the left wall, the x-direction velocity is so small
that it is not the dominant velocity component. Therefore, the assumptions that are used for
deriving the analytical solution are invalid. The numerical velocities are in excellent agreement
with the analytical solution except at x¡H and x¿L − H , where the analytical solution is
not accurate.

Fountain �ow in a rectangular cavity
In order to verify the method of interface capturing and compare the �ow behaviours of an
expanding foam �uid and a �uid with constant density, we solved the advance of a moving
�ow front in a two-dimensional rectangular cavity. It is important to investigate the evolution
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Figure 4. The unstructured triangular mesh of the rectangular cavity for numerical calculation of the
fountain �ow. 3584 elements and 1839 nodes.

of the �ow front shape because of fountain �ow e�ects. Fountain �ow refers to movement
of the �uid particles from the central region toward the wall, close to the �ow front [33, 34].
We consider two cases: a Newtonian �uid with constant density, and a Newtonian foam with
exponentially decreasing density.
Figure 4 shows the rectangular cavity, with an unstructured triangular mesh of 3584 ele-

ments used for numerical calculations. The length of this cavity is 0:8 m and the height is
0:2 m. The part of the cavity with 06x60:2 is initially �lled with �uid. The initial pressure
and velocity are set to zero, and we neglect gravity. For the constant-density �uid, the left-
hand side of the cavity is an inlet gate where a constant �ow rate condition is applied. There
the x-direction velocity is

u=25[0:01− (0:1− y)2] (m=s) (70)

and the other velocity component is set to zero. The viscosity of the �uid is 1000 Pa s and
its density is 1000 kg=m3.
For the expanding foam, whose density decays exponentially with time, there is no

inlet gate. This is the same problem as free-rise foaming without gravity. The viscosity is
1000Pa s, the initial density is �0 = 1000kg=m3, and the rate of exponential decay is 	=1s−1

(see Equation (D1)). For both cases, the viscosity and density of the �ctitious �uid are 1Pa s
and 1:23 kg=m3.
Figure 5 shows the pro�les of the �ow front at di�erent times, de�ned as the contour

where f=0:5. Because the mesh is irregular, the pro�les near the upper and lower wall
exhibit some wiggles. But the overall shape of the �ow front for the constant-density �uid
agrees well with the results of Behrens et al. [35], even though our study is not an exact
creeping �ow because Re=0:025. Behrens et al. studied the transient creeping fountain �ow
of an isothermal Newtonian �uid both in a circular tube and in a channel with parallel walls.
For the experiments in a circular tube, a steady �ow front shape was reached after the front
had traveled about 1.5 radii, and at the steady state the axial distance between the �uid at the
centreline and at the wall was 0:83± 0:04 radii. Using a numerical method that gave good
results for the circular tube, they obtained a di�erence value of about 0.94 half-heights in a
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Figure 5. Pro�les of the �ow front (f=0:5) at di�erent times (s) for (a) constant-density �uid
and (b) expanding foam in fountain �ow.

parallel planar plate. In our case, a steady state is reached after the front travels about 2.0
half-heights and the di�erence is about 1.0 half-heights. We obtained similar results on coarse
and/or structured meshes.
The �ow fronts for the expanding foam are slightly �atter than those of the Newtonian �uid.

A steady state is reached after the front travels about 1.6 half-heights, and the steady state
di�erence is about 0.8 half-heights. This value increases slightly as �ow front travels down
the cavity. These results di�er from those of Lefebvre and Keunings [16], who calculated a
�ow front that was almost �at except near the contact point. However, Lefebvre and Keunings
were simulating free rising foam, with only a single wall constraining the motion, and they
used a partial slip condition at the wall.
To understand the di�erences between the expanding foam and the constant-density �uid,

we need to investigate the pressure and velocity �elds. The pressure contours for the constant-
density �uid and the expanding foam are shown in Figure 6. For the constant-density �uid
the isobars are parallel to the inlet gate, except near the �ow front where the shape of the
pressure contours approaches the shape of �ow front. For the expanding foam the pressure
contours are more complicated. Near the left wall, the pressure is higher at the top and bottom
than at the centre. However, near the �ow front the pressure is higher at the centre than at
the wall.
In both cases, there are small regions with negative pressure near the contact point, where

the boundary condition changes from no-slip to traction-free. These negative pressures appear
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Figure 6. Pressure (Pa) contours in fountain �ow for (a) constant-density �uid at t=1:60 and (b)
expanding foam at t=0:83. Dotted line is the line where fractional volume f=0:5.

in the interior domain because our algorithm forces the free boundary pressure to zero. The
size of the area with negative pressure decreases, and its magnitude increases, as mesh size
decreases. These kinds of phenomena do not appear when the �ow front shape is a straight
line. When the �ow front shape is like a half circle, the fountain �ow closely resembles a
stick–slip �ow. The stick–slip problem has a singularity at the wall where boundary condition
changes [36], so it is di�cult to solve that problem numerically. Georgiou et al. [37] solved
the stick–slip problem using singular �nite elements, whose shape functions embody the form
of the singularity. But it is di�cult to adopt their method in our algorithm, because the singular
point moves with time, and FVM does not use shape functions. Instead, we allow the negative
pressures in our solution, recognizing that these negative pressures rarely a�ect the velocity
pro�le. If the pressure value is used for other physical calculations, such a pressure-dependent
foam density, then the negative pressure values must be corrected.
Figure 7 shows the velocity vectors and streamlines near the �ow front, for the constant-

density �uid at t=1:60 and the expanding foam at t=0:83. The expanding foam has a more
diverging velocity distribution than the constant-density �uid. Foam near the wall �ows a
little bit toward the centre because of volumetric expansion, and �ows into the wall again
beyond the �ow front. The �ow front shape of an expanding foam is less sharp, because the
foam expands at every point, including the �ow front tip. The expansion compels foam to
�ow away from the wall, altering the streamline and front shape.
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Figure 7. Velocity vectors and streamlines in fountain �ow for (a) constant-density �uid at t=1:60 and
(b) expanding foam at t=0:83. Dotted line is the line where fractional volume f=0:5.

More di�erences between the constant-density �uid and expanding foam are found in the
traces of �uid particles. In order to trace particles in our numerical method, a longer cavity
than the above test is needed, so we simulated �lling in the thin rectangular cavity with a
length of L=2:5 m and a height of 2H =0:2 m. Because of the symmetry of the problem,
only half of the cavity is analyzed. The mesh uses structured triangles with 1250 elements. The
other conditions are the same as the above test. Figure 8 shows the traces of some particles in
the fountain �ow. The normalized length 
 is de�ned as x=l, where l is the average distance
of �ow front from x=0. The normalized height � is also de�ned as y=H , where H is the
half height of the cavity and y=0 is the midplane.
For the constant-density �uid, the average position l of the �ow front increases linearly

with time, because the inlet condition is a constant �ow rate. In the internal �ow region,
where there is no e�ect of the fountain �ow, the particles move forward parallel to the walls.
But when the particles approach the �ow front, they experience fountain �ow. These particles
go outside to the wall, and subsequently �ow slowly. As shown in Figure 8(a), some traces
move straight forward and then curve upward and �nally go backward, when plotted in the

–� domain. Others traces move straight forward to a certain limiting curve, and do not
advance further in the 
–� coordinates.
Figure 8(c) shows analytical results for the movement of particles in the internal �ow

region. Because, for a constant-density �uid, the x-direction velocity pro�le is parabolic and
the y-direction velocity is zero, material points with �= �∗ ≡ 1=√3 have a local velocity that
equals with an average velocity. When �¡�∗, the velocity of the particles is greater than the
velocity of the �ow front. As time advances, these particles catch up with the �ow front,
near 
=1. But when �¿�∗, the velocity of the particles is less than the velocity of the �ow
front. As time advances, the distance from these particles to the �ow front increases, and the
normalized length 
 approaches a constant value of 1:5(1 − �2), which is the ratio between
local velocity and �ow front velocity. Thus, a particle with 
¡1:5(1 − �2) will never reach
the �ow front, and its 
 will increase with time. However, particles with 
¿1:5(1− �2) have
experienced the fountain �ow, and their values of 
 decrease with time [38].
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Figure 8. Traces of some particles in the fountain �ow. Note that 
= x=l and �=y=H .
(a) Numerical results of constant-density �uid, (b) Numerical results of expanding
foam, (c) Analytical results of constant-density �uid in the internal �ow region, (d)

Analytical results of expanding foam in the internal �ow region.

The movement of particles in the expanding foam is quite di�erent. The average position l
of the �ow front increases exponentially with time,

l= l0 exp(	t) (71)

where l0 is the initial position of the �ow front and 	 is the rate of exponential decay of
density. In the internal region, every particle moves toward the midplane of the cavity. At the
same time, each particle moves toward the �ow front and, if the �ow continues for enough
time, wil1 catch up to the �ow front. As the particle reaches the �ow front, it experiences the
fountain �ow and moves out toward the wall, where the particles move more slowly in the x
direction. As shown in Figure 8(b), the trace of the every particle circulates counter-clockwise
in the 
–� domain. If the �ow continues for a large enough time, each particle will circulate
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Figure 9. The unstructured triangular mesh of the mold with an inserted
block. 1860 elements and 1009 nodes.

multiple times. Thus, every particle can experience the fountain �ow many times, provided
the cavity is enough long.
Figure 8(d) shows the particle traces in the internal �ow region, based on the approxi-

mate analytic solution of expanding foam in the thin slit for the case of creeping �ow (see
Appendix D). If we integrate Eqs. (D13) and (D14), we can �nd the particle position as a
function of time in this region. The normalized positions are


= 
0�30e
−	t

[
1 +

(
1
�20

− 1
)
e	t

]3=2
(72)

�=
[
1 +

(
1
�20

− 1
)
e	t

]−1=2
(73)

where 
0 and �0 are the normalized co-ordinates of the initial position of the particle. The
normalized length 
 of every particle will become greater than 1 as time advances. That means
every particle in the internal �ow region will catch up to the �ow front and experience the
fountain �ow. When �¡�∗, the x-direction velocity of the particle is greater than �ow front
velocity, and 
 increases with time. But when �¿�∗, the x-direction velocity of the particle
is less than the �ow front velocity, and 
 decreases with time.

Mold �lling

As a �nal demonstration problem, �lling of a complex mold geometry by an expanding
foam is simulated. A two-dimensional mold with an insert was selected. Figure 9 shows the
unstructured mesh of the mold, with 1860 elements and 1009 nodes. Foam is poured into the
mold and expands to �ll the mold. The left side of the mold, 06x60:1, is initially �lled
with the foam. The initial pressure and velocity are set to zero, and we neglect gravity. The
density of the foam decays exponentially with time as given in Equation (D1). The initial
density is �0 = 1000kg=m

3 and the rate of exponential decay is 	=1s−1. The viscosity of the
foam is 10 000 Pa s. When we formulate the numerical algorithm, inertia and gravity e�ects
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Figure 10. Fill time (s) contours of mold �lling in (a) constant-density �uid and (b) expanding foam.

are taken into account because the viscosity of a polyurethane foam may vary from 0:1 Pa s
to an in�nite value. However, we consider only a high viscosity case in this example.
For the comparison, we also simulated the mold �lling of the Newtonian �uid with constant

density. The constant-density �uid initially �lls the same part as the foam does initially. A
constant �ow rate condition is applied at the inlet gate, x=0. This �ow rate is 9×10−3 m2=s,
and the velocity is assumed to have a parabolic pro�le. The density is 1000 kg=m3 and the
viscosity is 10 000Pa s. For the both cases, the viscosity and density of the �ctitious �uid are
1 Pa s and 1:23 kg=m3.
Figure 10 shows the �ll time contours. The �lling time of the mold is 7:824 s for the

constant-density �uid and is 2:612 s for the expanding foam. These values are less than
analytical �lling times of 8.667 and 2:639 s, respectively, because some air is trapped behind
the insert. Also, the cells near the boundary are not �lled completely because the critical
fractional volume value fc, which is used for switching the boundary condition from traction-
free to no-slip, is 0.9 in our case (see Equations (13) and (14)).
For the constant-density �uid, there are some wiggles in the left upper and lower corners.

The mesh is too coarse to trace exactly the �ow front when the �ow front is almost parallel to
the velocity. But for the expanding foam, the orientation of the �ow front is almost normal to
the �ow direction in the left corner, so there are no wiggles. In both cases, there are weldlines
and some air entrapment behind the insert. Note that our simulation allows air to pass freely
through the mold walls. Thus, any residual air in the simulation at the end of mold �lling is
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Figure 11. Traces of some particles during the mold �lling. The upper half of the mold is for the
constant-density �uid and the lower half is for the expanding foam.

due to the �nite size of the mesh. The amount of this residual air will decrease as the mesh
is re�ned.
Figure 11 shows the paths of some �uid particles during the mold �lling. Paths in the

upper half of the mold are for the constant-density �uid and the paths in the lower half are
for the expanding foam. For the constant-density �uid, there is a vortex in the left corner of
the mold after the corner �lls. Once the particles go into this vortex region, they remain there
during the remainder of mold �lling. For expanding foam there is no vortex in the mold, so
particles which go into the left corner of the mold eventually �ow to the centre of the mold,
due to foam expansion after the corner �lls.

CONCLUSIONS

Mold �lling with a variable-density �uid that �lls a mold by self-expansion was predicted by
numerical simulation. A pressure-based �nite volume method and an explicit high-resolution
interface capturing method for unstructured meshes with treatment of �uid compressibility was
successfully applied to this moving boundary problem. Expanding foam, which is modelled
as a Newtonian �uid with temporal density change, showed fundamentally di�erent �ow
behaviours compared to a constant-density �uid. The shape of the �ow front in fountain
�ow is �atter for expanding foam than for a constant-density �uid. Also, �uid particles of
expanding foam �ow follow more complicated paths in the mold. This study will be a basis
for a non-isothermal and three-dimensional numerical simulation of foam reaction injection
molding which will consider bubble growth, reaction kinetics, and foam rheology.

APPENDIX A: EVALUATION OF SCALAR QUANTITIES AT CELL FACES
AND GRADIENTS AT CELL CENTRES

When using an unstructured cell-based control volume as shown in Figure A1, it is necessary
to evaluate primary quantities at the cell faces and their gradients at the cell centres. These
two evaluations are coupled with each other.
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Figure A1. Calculation of gradient using �nite concept method. Neighbour
cell is (a) interior cell, (b) boundary cell.

To evaluate the gradient of a scalar quantity at the cell centre, a linear reconstruction method
[18] based on the divergence theorem can be used. The gradient of any �eld variable � at
the cell centre can be approximated as

(∇�)P= 1
(�V )P

∑
f
(�A)f�f (A1)

where P represents the given cell, f denotes the faces of cell P, (�V )P is the volume of
cell P, and (�A)f is the outward area vector normal to face f as shown in Figure A1(a).
Because physical variables are only stored at cell centres, the cell face values �f must be
acquired from cell centre values using some appropriate method.
The simplest way to obtain values at the cell face is to use linear interpolation from the

neighboring cells. This gives the face value of � as

�f= ��f ≡ lP�N + lN�PlP + lN
(A2)

where the bar indicates a length-inverse weighted linear interpolation, N is the neighbour cell
sharing face f with cell P, lP is the distance between P and f, and lN is the distance between
N and f. This method has second-order accuracy as long as the centre of the cell face lies at
the mid-point between the centres of cells P and N . If not, and the gradient varies between
the cells, then the accuracy of this method drops rapidly. This case occasionally occurs when
�nding the velocity pro�le on an unstructured mesh near the wall.
In order to increase the order of accuracy, values at the cell face can be obtained from a

combination of the value and the gradient stored at the cell centre as follows:

�f=�P + (∇�)P · rPf (A3)

where (∇�)P is calculated from a combination of Equations (A1) and (A2) and rPf is the
vector from the cell centre P to the cell face f. The face value �f must lie between the
maximum and minimum value of neighbour cells of cell P.

�f= min{max{�min; �f}; �max} (A4)
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Because each cell face is shared by two neighbour cells, Mathur and Murthy [18] averaged
the two values that are calculated from Equation (A3) from the two cells sharing the face.
This approach can be generalized to evaluate a scalar quantity at the cell face and its

gradient at the cell centre iteratively as follows:

(∇�)nP =
1

(�V )P

∑
f
(�A)f�̂nf

�̂nf =
�nf;P + �

n
f;N

2

�nf;P =�P + (∇�)n−1P · rPf �nf;N =�N + (∇�)n−1N · rNf

(A5)

where the superscript indicates an iteration step, and n¿2. The �rst iteration values are found
using

(∇�)1P =
1

(�V )P

∑
f
(�A)f�̂1f

�̂1f = ��f

(A6)

If n is two, this method is the same as Mathur and Murthy [18].
For regular meshes and a smooth pro�le of the variable, the gradient calculated using n=1

is very close to that using n=2. But for other cases, especially when the cell face is not
coincident with the centre position of the two neighbour cells and gradient is large, many
iterations are required to obtain accurate solutions. So we suggest a method that is a kind of
over-estimation.

(∇�)P = 1
(�V )P

∑
f
(�A)f�f

�f =
�f;P + �f;N

2

�f;P =�P + (∇�)1P · (rPf + �sPf )

�f;N =�N + (∇�)1N · (rNf + �sNf )

(A7)

Here sPf (see Figure 1(b)) is vector from P to h, a point that lies on the line normal to the
face and passing through the centre of the face, and is as close as possible to point P. � is
an over-estimating factor. When � is zero, the above method is same as Mathur and Murthy’s
n=2 method. We use Equation (A7) with �=0:75, a value that was found by trial and error
to give good solutions.

APPENDIX B: EVALUATION OF THE DIFFUSION TERM AT A CELL FACE

In order to evaluate the gradient at the cell face, we use the �nite concept method (FCM)
that was proposed by Kim [39]. The gradient of a variable � at the cell face for the
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two-dimensional case can be estimated as

(∇�)f = 1
(�V )f

[(�A)f(�N − �P) + (�A)t(�d − �c)] (B1)

where

rPN = rN − rP; rcd= rd − rc
(�A)f = rcd × k; (�A)t =k × rPN
(�V )f = (rPN × rcd) · k

(B2)

Here r is the position vector, k is the third-direction unit vector, and the subscripts indicate
the position as de�ned in Figure A1(a). (�A)f is the outward area vector normal to face f
in cell P, and (�A)t is the tangential area vector that is normal to vector rPN . (�V )f is a
virtual control volume at the cell face f that is described by the dotted line in Figure A1. If
the centre of the cell face has the same position as the mid-point between the centres of its
neighbour cells, this method has a second-order accuracy. This representation does not contain
vectors constrained by any particular co-ordinate system.
Using the gradient calculated this way, the di�usion term at the cell face can be calculated as

�f(�A)f · (∇�)f=�f (�A)f · (�A)f
(�V )f

(�N − �P) + �f (�A)f · (�A)t
(�V )f

(�d − �c) (B3)

Here �f is the di�usion coe�cient at the cell face that is calculated by appropriate interpolation
of values between neighbour cells. This formulation is exactly same as that of Mathur and
Murthy [18] in spite of the di�erent description. The �rst term on the right-hand side of
this equation represents primary di�usion, which occurs by the di�erence of values in the
outward normal direction to the face. The second term, which is called cross-di�usion, is zero
in orthogonal grid, that is when (�A)t is normal to (�A)f. For an unstructured grid this term
is generally not zero and can be signi�cant, so its correct evaluation becomes very important.
Mathur and Murthy [18] proposed a new formulation for evaluating the secondary di�usion
term. To avoid the use of the face tangent area vectors (�A)t and face node values (�c; �d),
Equation (B3) can be represented as follows:

�f(�A)f · (∇�)f =�f (�A)f · (�A)f
(�V )f

(�N − �P)

+�f

[
(�A)f · (∇�)f − (�A)f · (�A)f

(�V )f
(∇�)f · rPN

]
(B4)

where the bar again means a length-inverse weighted average value between adjacent cells,
and rPN is de�ned in Equation (B2). The above equation can be written as

�f(�A)f · (∇�)f=Df(�N − �P) + Snonf (B5)

Here Df contains the di�usion coe�cient and geometric information. Snonf is a secondary
di�usion term that includes averaged gradients of the scalar quantity, which must be calculated
using another procedure as described in Appendix A.
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The di�usion term at the face between an interior cell and a boundary cell is calculated as
follows:

�b(�A)b · (∇�)b =�b (�A)b · (�A)b(�V )b
(�b − �P)

+�b

[
(�A)b · (∇�)P − (�A)b · (�A)b

(�V )b
(∇�)P · rPb

] (B6)

where

rPb = rb − rp; rcd= rd − rc
(�A)b = rcd × k
(�V )b = (rPb × rcd) · k

(B7)

or

�b(�A)b · (∇�)b = Db(�b − �P) + Snonb (B8)

where the subscripts indicate points de�ned in Figure A1(b).

APPENDIX C: DERIVATION OF THE FACE FLUX USING MIM

Because a �nite volume method with cell centred storage is used, it is very important to
obtain a good description of face �ux in order to avoid checkerboard pressure modes. In this
study, we use a method similar to the momentum interpolation method (MIM), which was
�rst proposed by Rhie and Chow [31].
Using the discretized momentum equation, Equation (33), the velocity at each cell centre

can be represented as

vP=

∑
f aNvN + S

non
P

aP
− (�V )P

aP
(∇p)P=HP − (�V )P

aP
(∇p)P (C1)

If HP and 1=aP are assumed to vary linearly between cells, the average face velocity can be
approximated as

�vf= �Hf − (�V )f
�af

(∇p)f (C2)

where the bar means a length-inverse weighted average, and (�V )f is a virtual control volume
at the cell face as de�ned at Appendix 2 and Figure A1(a). If the pressure gradient at the
cell face is known, the face velocity can be written as

vf= �Hf − (�V )f
�af

(∇p)f (C3)

The above two equations can be combined to eliminate �Hf,

vf= �vf − (�V )f
�af

[(∇p)f − (∇p)f] (C4)
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then the face volume �ux can be easily obtained as follows:

Ff ≡ (�A)f · vf=(�A)f · �vf − (�V )f
�af

(�A)f · [(∇p)f − (∇p)f] (C5)

Applying the expression for the gradient at the cell face (see Appendix B) to Equation (C5)
gives

Ff=(�A)f · �vf − (�A)f · (�A)f
�af

[(pN − pP)− (∇p)f · rPN ] (C6)

This expression is used for all faces that separate two interior cells.
At a boundary face, the volume �ux can be written as

Fb=(�A)b · vP − (�A)b · (�A)b
aP

[(pb − pP)− (∇p)P · rPb] (C7)

APPENDIX D: ANALYTICAL SOLUTION FOR A FOAM FLOW WITH TEMPORAL
DENSITY CHANGE IN A THIN SLIT

An approximate analytic solution can be obtained for the case of creeping �ow in the thin
slit. The basic assumptions are as follows: isothermal �ow, no slip at the wall, no body
force, laminar �ow, and Newtonian �uid that follows Stokes’ hypothesis. Figure D1 shows
the geometry, which is initially �lled completely with a foam whose density changes with
time. The geometry is a two-dimensional rectangular shape with three walls and a free surface.
The free surface is maintained as �at, with the assumption that foam is removed as soon as
it �ows beyond the free surface line.
Density is assumed to be a function only of time, using

�(t)=�0 exp(−	t) (D1)

wall

L

2H

y

x

free surface

Figure D1. The geometry used for the approximate analytical solution for a
foam �ow with temporal density change.
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where �0 is the initial density, 	 is the rate of exponential decay of density, and t is time.
Every point in the foam has the same density at any given time. The Reynolds number for
this problem can be de�ned as

Re=
�0	H 2

�
(D2)

where � is the viscosity and H the half-height de�ned in Figure D1. If Re�1 then inertia
can be neglected, and the continuity and momentum equations can be written as follows:

@u
@x
+
@v
@y
=	 (D3)

@p
@x
=�

(
@2u
@x2

+
@2u
@y2

)
(D4)

@p
@y
=�

(
@2v
@x2

+
@2v
@y2

)
(D5)

where u and v are x- and y-direction velocities, respectively, and p is pressure. All equations
are independent of time, even though the problem is originally transient. If L�H , then the
y-direction velocity can be neglected and the x-direction derivatives of velocity are also
negligible, reducing the x-direction momentum equation to

@p
@x
=�

@2u
@y2

(D6)

If pressure is assumed to be a function of x only and boundary conditions are applied, the
x-direction velocity is

u=
1
2�
@p
@x
(y2 −H 2) (D7)

Integrating the velocity in the y direction from zero to H gives∫ H

0
u dy=

1
2�
@p
@x

∫ H

0
(y2 −H 2) dy (D8)

or

�u=
H 2

3�

(
−@p
@x

)
(D9)

where the bar now means the average over the y direction. Integrating the continuity equation
along the y direction and applying boundary conditions gives∫ H

0

@u
@x
dy +

∫ H

0

@v
@y
dy=

∫ H

0
	 dy (D10)

or

�u=	x (D11)
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Substituting Equation (D11) into Equation (D9) and applying the boundary condition p=0
at x=L, we obtain the pressure solution as follows:

p=− 3�	
2H 2 (x

2 − L2) (D12)

The x-direction velocity is then obtained as

u=− 3	
2H 2 x(y

2 −H 2) (D13)

When this equation is substituted into the continuity equation, the y-direction velocity is also
obtained

v=
	
2H 2 (y

3 −H 2y) (D14)
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